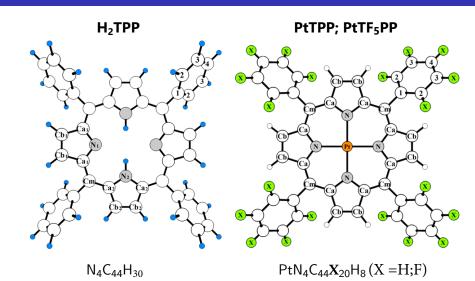
Геометрическое строение 5,10,15,20тетрафенилпорфирина и 5,10,15,20-тетра(фенил/ пентафторфенил)-порфиринатов платины(II)


Курочкин И.Ю.

Ивановский государственный химико-технологический университет

03/07/2022

• Объекты

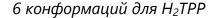
Цель: исследование геометрического строения свободных молекул

• Методы

Синхронный ЭГ/МС эксперимент

Структурный анализ:

- UNEX
- VibModule


KX расчеты

Получение стартовых геометрий и силовых полей, конформационный анализ:


- B3LYP
- B97D
- NBO, QTAIM

Базисные наборы: cc-pVTZ(H,C,N,F); aug-cc-pVTZ(Pt)

• Конформационное анализ

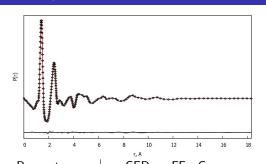
• Относительные энергии конформеров [AE] = [kJ/mol]

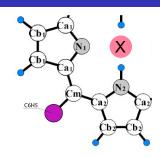
H ₂ TPP	C ₁	C _{2<i>h</i>(1)}	C _{2h(2)}	D ₂	C _{2v}	D_2
B3LYP	to D _{2d}				min	SP
ΔΕ	0.3	0.2	0.5	0.9	0.0	1.1
B97D					min	SP
ΔΕ	1.6	1.3	1.8	3.5	0.0	10.
PtTPP	C ₂	C _{2h}	D ₄	D_{2d}	D_{4h}	
B3LYP	to D _{2d}			min	SP4	
ΔΕ	0.1	0.1	0.2	0.0	0.2	
B97D				min	SP4	
ΔΕ	1.0	1.1	1.7	0.0	6.4	
PtTF5PP	C ₂	C _{2h}	D ₄	D_{2d}	D_{4h}	
B3LYP	to D _{4h}	min				
ΔΕ	0.1	0.0	0.0	0.0	0.0	SP4 седл
B97D				min	SP4	точ:
ΔΕ	0.2	0.2	0.3	0.0	1.9	пор

седловая гочка 4 порядка

• Особенности структурного анализа ГЭ

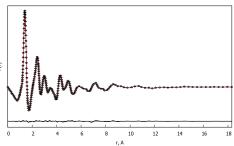
- Структурный анализ выполнен в 2-х вариантах для каждой молекулы
 - Стартовые геометрии и силовые поля взяты из расчетов B3LYP и B97D
- Все связанные расстояния С-С, С-N, (+C-F для $PtTF_5PP)$ варьировались в одной группе


• В зависимости от уровня теории, сильно меняется большое число несвязанных расстояний.

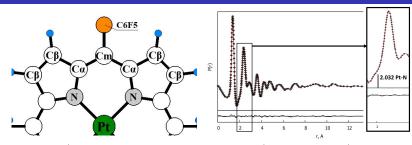

 Пример для r(Ca-C_{Ph2})

	Å	ampl(C	a-C _{Ph2})	r(Ca-C _{Ph2})		
	A	B3LYP	B97D	B3LYP	B97D	
I	PtTPP	0.35	0.17	3.26	3.15	
	PtTF ₅ PP	0.36	0.18	3.34	3.22	
	H ₂ TPP _{ave}	0.23	0.16	3.20	3.12	

• Результаты ГЭ (Н. ТРР)

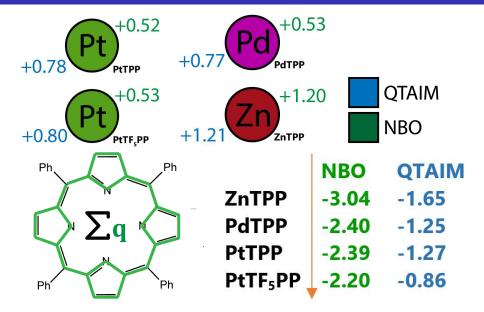


Parameter	GED r _{h1} FF - Силовое поле		B3LYP re	B97D re
Å	$FF_{B3LYP}\left(C_{2V}\right)$	$FF_{B97D} (C_{2V})$	DJLIF Ie	D97D Te
r(X-N)	2.068(7)	2.077(4)	2.070	2.080
r(Ca-N)	1.375(3)	1.374(3)	1.367	1.371
r(Ca-Cb)	1.451(3)	1.449(3)	1.443	1.446
r(Cb-Cb)	1.372(3)	1.370(3)	1.356	1.364
r(Cm-Ca)	1.411(3)	1.413(3)	1.403	1.410
r(Cm-CPh1)	1.504(3)	1.494(3)	1.497	1.491
r(C-CPh)ave	1.400(3)	1.402(3)	1.392	1.399
Θ	88(50)	70(3)	72.6	61.4
Rf. %	4.5	4.5		

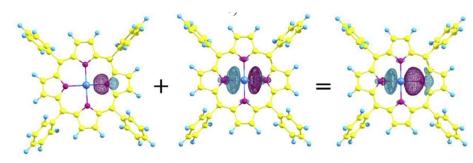

• Результаты ГЭ (РІТРР)

Parameter	GED r_{h1} FF - Силовое поле		B3LYP re	B97D r _e
Å	$FF_{B3LYP}\left(D_{2d}\right)$	$FF_{B97D} \left(D_{2d} \right)$	DSLIF Ie	D91D 1e
r(Pt-N)	2.024(4)	2.027(4)	2.027	2.032
r(Ca-N)	1.380(3)	1.383(3)	1.375	1.383
r(Ca-Cb)	1.446(3)	1.440(3)	1.439	1.440
r(Cb-Cb)	1.362(3)	1.359(3)	1.352	1.360
r(Cm-Ca)	1.398(3)	1.398(3)	1.393	1.399
r(Cm-CPh1)	1.502(3)	1.491(3)	1.497	1.492
r(C-CPh)ave	1.396(3)	1.399(3)	1.392	1.399
Θ	89(167)	68(3)	80.1	65.3
Rf. %	4.6	4.0		

Результаты ГЭ (РСТЕ₅РР)


Parameter	GED r _{h1} FF - Силовое поле		B3LYP re	B97D re
Å	$FF_{B3LYP}\left(D_{4h}\right)$	$FF_{B97D} \left(D_{2d} \right)$	DJLIF I _e	D97D 1 _e
r(Pt-N)	2.021(4)	2.032(5)	2.026	2.030
r(Ca-N)	1.376(3)	1.378(3)	1.373	1.380
r(Ca-Cb)	1.446(3)	1.437(3)	1.439	1.440
r(Cb-Cb)	1.357(3)	1.354(3)	1.351	1.359
r(Cm-Ca)	1.394(3)	1.393(3)	1.391	1.395
r(Cm-CPh1)	1.499(3)	1.489(3)	1.495	1.492
r(C-CPh)ave	1.392(3)	1.396(3)	1.389	1.398
r(C-F)ave	1.336(3)	1.337(3)	1.334	1.340
Θ	90(0)	79(5)	90	74.2
Rf, %	5.8	4.4		

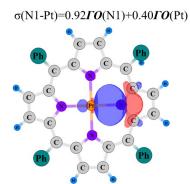
Сравнение геометрии H₂TPP, PtTPP, PtTF₅PP

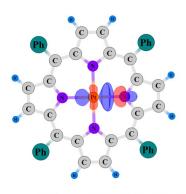

Parameter,	H_2TPP	<u>PtTPP</u>	PtTF ₅ PP	<u>PdTPP</u>	<u>ZnTPP</u>
Å	(ave.)			[1]	[1]
r(<u>Me</u> -N)	2.077(4)	2.027(4)	2.032(5)	2.038(5)	2.052(5)
r(<u>Ca</u> -N)	1.374(3)	1.383(3)	1.378(3)	1.377(3)	1.377(3)
r(<u>Ca-Cb</u>)	1.449(3)	1.440(3)	1.437(3)	1.445(3)	1.446(3)
r(Cb-Cb)	1.370(3)	1.359(3)	1.354(3)	1.358(3)	1.361(3)
r(Cm-Ca)	1.413(3)	1.398(3)	1.393(3)	1.400(3)	1.407(3)
r(Cm-CPh1)	1.494(3)	1.491(3)	1.489(3)	1.489(8)	1.483(9)
r(C- <u>CPh</u>) ave	1.402(3)	1.399(3)	1.396(3)	1.394(3)	1.405(3)
r(C-F) ave	-	-	1.337(3)	-	-
r(Cm-Cm)	6.91	6.91	6.88	6.90	6.93
r(N-N)	4.15	4.05	4.06	4.07	4.10
Θ	70(3)	68(3)	79(5)	83(18)	80(4)
<u>Rf</u> , %	4.5	4.0	4.4	4.6	4.3

^[1] Girichev G. V. et al. Geometric and electronic structures of 5, 10, 15, 20-tetraphenylporphyrinato Palladium (II) and Zinc (II): Phenomenon of Pd (II) complex //Journal of Molecular Structure. – 2019. – T. 1183. – C. 137-148.

• Электронное строение NBO, QTAIM

• Электронное строение NBO


Взаимодействие донорной орбитали атома N и акцеторных $5p_x\,$ орбиталей атома Pd


$$LP(N) \rightarrow 5p_x(Pd)$$
 (на рисунке)
 $LP(N) \rightarrow 4d_{x2-y2}(Pd)$
 $LP(N) \rightarrow 5s(Pd)$

Girichev G. V., Tverdova N. V., Giricheva N.I., Savelyev D.S., Ol'shevskaya V.A., Ageeva T.A., Zaitsev A. V., Koifman O.I. Geometric and electronic structures of 5,10,15,20-tetraphenylporphyrinato Palladium(II) and Zinc(II): Phenomenon of Pd(II) complex // J. Mol. Struct. 2019. Vol. 1183. P. 137–148

• Электронное строение Me-N NBO

 $\sigma^*(N1-Pt)=0.41\mathbf{\Gamma O}(N1)-0.91\mathbf{\Gamma O}(Pt)$

 $\Gamma O(Pt) = sp^2d$ (6s, 6p и 5dx2-y2) $\Gamma O(N1) = sp^2$ (2s, 2py)

• Электронное строение NBO, QTAIM

Me-N	∇²ρ a.u.	DI	P	r, Å	_
H ₂ TPP	-	-	-	2.070	
PtTPP	0.36	0.85	0.55	2.032	$ abla^2 ho$ - лапласиан
$PtTF_5PP$	0.36	0.85	0.55	2.030	электронной плотности
PdTPP	0.35	0.76	0.49	2.036	DI - индекс делокализации
ZnTPP	0.27	0.45	0.32	2.057	Р - порядок связи

C_a -N	∇²ρ a.u.	DI	P	r, Å
H ₂ TPP	-1.02	1.24	1.31	1.371
PtTPP	-0.89	1.13	1.20	1.383
PtTF ₅ PP	-0.89	1.12	1.21	1.380
PdTPP	-0.90	1.14	1.23	1.379
ZnTPP	-0.94	1.17	1.24	1.377

Итог

- 1. Впервые получена экспериментальная информация о геометрии тетрафенилпорфирина и 2-х порфиринатов платины в газовой фазе.
- 2. КХ расчеты дают значительно отличающиеся результаты как в плане предсказания геометрии, так и в плане конформационного многообра-зия (в случае фторированной молекулы). При этом итоговые результаты лучше согласуются с данными В97D расчета.
- 3. Введение большого числа атомов фтора существенно не сказывается на строение порфиринового макроцикла.
- NBO анализ показал, что атом металла стягивает на себя значи-тельную часть электронной плотности. При этом связь платина-азот образуется в результате взаимодействия гибридных орбиталей атомов. (что отличается от случая с PdTPP)